Phylogenomics reveal the Dynamic Evolution of Fungal Nitric Oxide Reductases and their Relationship to Secondary Metabolism


Steven A. Higgins, Christopher W. Schadt, Patrick B. Matheny, Frank E. Löffler


Fungi expressing P450nor, an unconventional nitric oxide (NO) reducing cytochrome P450, are considered significant contributors to environmental nitrous oxide (N2O) emissions. Despite extensive efforts, fungal contributions to N2O emissions remain uncertain. For example, the majority of N2O emitted from antibiotic-amended soil microcosms is attributed to fungal activity, yet axenic fungal cultures do not couple N-oxyanion respiration to growth and these fungi produce only minor quantities of N2O. To assist in reconciling these conflicting observations and produce a benchmark genomic analysis of fungal denitrifiers, genes underlying denitrification were examined in >700 fungal genomes. Of 167 p450nor-containing genomes identified, 0, 30, and 48 also harbored the denitrification genes narG, napA, or nirK, respectively. Compared with napA and nirK, p450nor was twice as abundant and exhibited 2-5-fold more gene duplications, losses, and transfers, indicating a disconnect between p450nor presence and denitrification potential. Furthermore, cooccurrence of p450nor with genes encoding NO-detoxifying flavohemoglobins (Spearman r = 0.87, p = 1.6e-10) confounds hypotheses regarding P450nor’s primary role in NO detoxification. Instead, ancestral state reconstruction united P450nor with actinobacterial cytochrome P450s (CYP105) involved in secondary metabolism (SM) and 19 (11%) p450nor-containing genomic regions were predicted to be SM clusters. Another 40 (24%) genomes harbored genes nearby p450nor predicted to encode hallmark SM functions, providing additional contextual evidence linking p450nor to SM. These findings underscore the potential physiological implications of widespread p450nor gene transfer, support the undiscovered affiliation of p450nor with fungal SM, and challenge the hypothesis of p450nor’s primary role in denitrification.

Access Full Publication


Higgins SA, Schadt CW, Matheny PB, Loffler FE. 2018. Phylogenomics reveal the dynamic evolution of fungal nitric oxide reductases and their relationship to secondary metabolism. Genome Biology and Evolution 10:2474-2489.