Horizontal transfer of PAH catabolism genes in Mycobacterium: Evidence from comparative genomics and isolated pyrene-degrading bacteria

Researchers:

DeBruyn JM, Mead TJ, Sayler GS

Abstract:

Biodegradation of high molecular weight polycyclic aromatic hydrocarbons (PAHs), such as pyrene and benzo[a]pyrene, has only been observed in a few genera, namely fast-growing Mycobacterium and Rhodococcus. In M. vanbaalenii PYR-1, multiple aromatic ring hydroxylating dioxygenase (ARHDOs) genes including pyrene dioxygenases nidAB and nidA3B3 are localized in one genomic region. Here we examine the homologous genomic regions in four other PAH-degrading Mycobacterium (strains JLS, KMS, and MCS, and M. gilvum PYR-GCK), presenting evidence for past horizontal gene transfer events. Seven distinct types of ARHDO genes are present in all five genomes, and display conserved syntenic architecture with respect to gene order, orientation, and association with other genes. Duplications and putative integrase and transposase genes suggest past gene shuffling. To corroborate these observations, pyrene-degrading strains were isolated from two PAH-contaminated sediments: Chattanooga Creek (Tennessee) and Lake Erie (western basin). Some were related to fast-growing Mycobacterium spp. and carried both nidA and nidA3 genes. Other isolates belonged to Microbacteriaceae and Intrasporangiaceae presenting the first evidence of pyrene degradation in these families. These isolates had nidA (and some, nidA3) genes that were homologous to Mycobacterial ARHDO genes, suggesting that horizontal gene transfer events have occurred.

Access Full Publication

Citation:

DeBruyn JM, Mead TJ, Sayler GS. 2012. Horizontal transfer of PAH catabolism genes in Mycobacterium: Evidence from comparative genomics and isolated pyrene-degrading bacteria. Environmental Science & Technology 46:99-106.